En mathématiques, un isomorphisme entre deux ensembles structurés est une application bijective qui préserve la structure, et dont la réciproque préserve aussi la structureSi, pour beaucoup de structures en algèbre, cette seconde condition est automatiquement remplie, ce n'est pas le cas en topologie par exemple où une bijection peut être continue sans que sa réciproque le soit.. Plus généralement, en théorie des catégories, un isomorphisme entre deux objets est un morphisme admettant un « morphisme inverse ».